PRINCIPAL DIFFERENTIAL CALCULI OVER PROJECTIVE BASES

Thomas Weber

University of Eastern Piedmont

Bayrischzell

16.05.2022

In collaboration with P. Aschieri, R. Fioresi and E. Latini

Plan of the talk

 (H, Δ, ϵ, S) Hopf algebra A right H-comodule algebra

Main question: Given a Hopf-Galois extension $B:=A^{\operatorname{co} H}\subseteq A$ can we find noncommutative differential calculi $\Omega^{\bullet}(A)$, $\Omega^{\bullet}(H)$ such that

$$\Omega^{\bullet}(B) = \Omega^{\bullet}(A)^{\operatorname{co}\Omega^{\bullet}(H)} \subseteq \Omega^{\bullet}(A)$$

is a Hopf-Galois extension of graded algebras?

We give conditions for this to holds as first order differential calculi: Principal differential calculi

- Principal comodule algebras (faithfully flatness)
- · Base forms, horizontal forms and compatibility

Then we discuss sheaves of calculi which are locally principal.

- local ↔ global principles in noncommutative geometry
- use Ore localization of algebras/differential calculi

Hopf-Galois Extensions

Let k be a field.

 (A, δ_A) right H-comodule algebra with coaction $\delta_A \colon A \to A \otimes H$. We write $\Delta(h) = h_1 \otimes h_2$ and $\delta_A(a) = a_0 \otimes a_1$.

$$B:=A^{\operatorname{co} H}:=\{a\in A\mid \delta_A(a)=a\otimes 1\}$$

Definition (Kreimer-Takeuchi '80)

 $B \subseteq A$ is called a Hopf-Galois extension if the canonical map

$$\chi \colon A \otimes_B A \to A \otimes H, \qquad a \otimes_B a' \mapsto aa'_0 \otimes a'_1$$

is a bijection.

Example

- i.) If A = H then $\mathbb{k} = A^{\text{co}H} \subseteq A$ is Hopf-Galois extension with $\chi^{-1}(a \otimes h) = aS(h_1) \otimes h_2$.
- ii.) $\pi\colon P \to M$ principal G-bundle, $A = \mathcal{C}^\infty(M)$, $H = \mathcal{C}^\infty(G)$. Right G-action $r\colon P \times G \to P$ induces right coaction $\delta_A := r^*\colon A \to A \otimes H$. $B := A^{\operatorname{co} H} = \mathcal{C}^\infty(P/G) = \mathcal{C}^\infty(M)$ $\phi\colon P \times G \to P \times_M P$, $(p,g) \mapsto (p,r(p,g))$ induces $\chi := \phi^*$ and ϕ is bijection if r is free and transitive.

Principal Comodule Algebras

Definition

 (A, δ_A) is called a principal comodule algebra if

- i.) $B := A^{coH} \subseteq A$ is a Hopf-Galois extension and
- ii.) A is a faithfully flat left B-module, i.e. $\mathcal{M}_B \to \mathcal{M}_A^H$, $M \mapsto M \otimes_B A$ is an exact functor which reflects exactness.

In case the antipode of H is invertible we have equivalently to ii.)

- ii'.) There is a section $s \colon A \to B \otimes A$ of the left action $\ell \colon B \otimes A \to A$ in ${}_B\mathcal{M}^H$, i.e. $\ell \circ s = \mathrm{id}_A$.
- ii".) There is a right *H*-colinear unitary map $j: H \rightarrow A$.

Theorem (Schneider '90)

The following are equivalent.

- i.) (A, δ_A) is a principal comodule algebra.
- ii.) $\mathcal{M}_B \cong \mathcal{M}_A^H$ are equivalent categories.

Examples of Principal Comodule Algebras

1 The smash product algebra: Let B be a left H-module algebra. Then A = B # H is a right H-comodule algebra with $B = A^{coH}$ $(b \# h)(b' \# h') = b(h_1 \rhd b') \# h_2 h'$

It is a principal comodule algebra with cleaving map $j: H \to A, h \mapsto 1 \# h$.

2 $A = \mathrm{SL}_q(2)$ free algebra generated by $\alpha, \beta, \gamma, \delta$ modulo

$$\begin{split} \alpha\beta = &q^{-1}\beta\alpha, \quad \alpha\gamma = q^{-1}\gamma\alpha, \quad \beta\delta = q^{-1}\delta\beta, \quad \gamma\delta = q^{-1}\delta\gamma, \\ \beta\gamma = &\gamma\beta, \quad \alpha\delta - \delta\alpha = (q^{-1} - q)\beta\gamma, \quad \alpha\delta - q^{-1}\beta\gamma = 1 \end{split}$$

is Hopf algebra with
$$\Delta \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix} = \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix} \otimes \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix}$$
.

Consider the Hopf algebra quotient
$$\pi\colon A\to H=U(1), \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix} \to \begin{pmatrix} t & 0 \\ 0 & t^{-1} \end{pmatrix}$$

Then A is a right H-comodule algebra with $\delta_A = (\mathrm{id} \otimes \pi) \circ \Delta \colon A \to A \otimes H$. and $B = A^{\mathrm{co}H} = \mathbb{O}_{\sigma}(\mathbb{S}^2)$ is the Podleś sphere.

One can show that A is faithfully flat as a B-module.

First Order Differential Calculi

A associative unital algebra.

Definition

We call (Γ, d) a first order differential calculus (FODC) on A, if

- ① Γ is *A*-bimodule;
- 2 d: $A \rightarrow \Gamma$ is k-linear s.t.

$$d(ab) = d(a)b + adb$$
 (Leibniz rule)

holds for all $a, b \in A$;

Example

- i.) $A = \mathscr{C}^{\infty}(M)$, $\Gamma = \Gamma^{\infty}(T^*M)$, $d : A \to \Gamma$ de Rham differential $\mathrm{d} f|_{U} = \frac{\partial f}{\partial x^i} \mathrm{d} x^i$ in local chart (U,x).
- ii.) $A = \mathbb{C}_q \mathbb{S}^1 := \mathbb{C}[t,t^{-1}], \ q \in \mathbb{C}^{\times}$ not root of unity $\Gamma = A\mathrm{d}t, \ \mathrm{d}t \cdot f(t) := f(qt)\mathrm{d}t,$ and $\mathrm{d}f|_t := \frac{f(qt) f(t)}{t(q-1)}\mathrm{d}t,$ for f rational function in t.

Covariant Differential Calculi

H Hopf algebra

 (A, δ_A) right *H*-comodule algebra

Definition (Woronowicz '89)

A FODC (Γ, d) on A is right H-covariant if

$$ada' \mapsto a_0 da'_0 \otimes a_1 a'_1 \tag{1}$$

for $a, a' \in A$ extends to a well-defined k-linear map $\Gamma \to \Gamma \otimes H$.

Proposition

A FODC (Γ, d) on (A, δ_A) is right H-covariant if and only if

- $(\Gamma, \Delta_{\Gamma})$ is a right H-covariant A-bimodule: $\Delta_{\Gamma}(a \cdot \omega \cdot a') = \delta_{A}(a) \cdot \Delta_{\Gamma}(\omega) \cdot \delta_{A}(a')$
- d is right H-colinear: $\Delta_{\Gamma} \circ d = (d \otimes id_{H}) \circ \delta_{A}$

Then Δ_{Γ} is determined by (1).

Lemma

Let (Γ, d) be a right H-covariant FODC on a right H-comodule algebra A.

i.) An injective right H-comodule algebra map $\iota\colon A'\hookrightarrow A$ induces a right H-covariant FODC $(\Gamma_\iota,\operatorname{d}_\iota)$ on A', where

$$\Gamma_{\iota} := \iota(A') \mathrm{d}\iota(A') \subseteq \Gamma$$

and $d_{\iota}: A' \ni a' \mapsto d\iota(a') \in \Gamma_{\iota}$.

ii.) A surjective right H-comodule algebra map $\pi\colon A\to A'$ induces a right H-covariant FODC $(\Gamma_\pi,\mathrm{d}_\pi)$ on A', where

$$\Gamma_{\pi} := \Gamma/\Gamma_{I}$$

is the A-bimodule quotient with $\Gamma_I := I dA + A dI$, where $I := \ker \pi \subseteq A$ and $d_\pi : A' \ni \pi(a) \mapsto [da] \in \Gamma_\pi$.

iii.) If ι is a section of π we have an isomorphism $(\Gamma_{\iota}, d_{\iota}) \cong (\Gamma_{\pi}, d_{\pi})$ of right H-covariant FODC.

We call $(\Gamma_{\iota}, d_{\iota})$ the pullback calculus, while we call (Γ_{π}, d_{π}) the quotient calculus.

Horizontal and Vertical Forms

 (A, δ_A) principal comodule algebra, recall this means $B = A^{\operatorname{co} H} \subseteq A$ Hopf-Galois and A is faithfully flat B-module.

Definition

A FODC (Γ_A, d_A) on A and a left covariant FODC (Γ_H, d_H) on H are called a weak principal DC if V ver is well-defined and makes

$$0 \to A \otimes_B \Gamma_B \to \Gamma_A \xrightarrow{\mathrm{ver}} A \square_H \Gamma_H \to 0$$

exact. They are called principal DC if in addition (Γ_A , d_A) is right H-covariant and (Γ_H , d_H) is bicovariant.

Above

ver:
$$\Gamma_A \to A \square_H \Gamma_H$$
, $ad_A a' \mapsto a_0 a'_0 \otimes a_1 d_H a'_1$,

where $A\square_H\Gamma_H:=\operatorname{span}_{\Bbbk}\{a\otimes\omega_H\in A\otimes\Gamma_H\mid \delta_A(a)\otimes\omega_H=a\otimes\Delta_L^{\Gamma_H}(\omega_H)\}.$

Warning: ver might not be well-defined!

Principal Differential Calculi

Lemma

Let $\pi\colon A\to H$ be a Hopf algebra quotient and (Γ_A,d_A) a left covariant FODC on A. Then

- i.) With $\Delta_L := (\pi \otimes \mathrm{id}) \circ \Delta_L^{\Gamma_A} \colon \Gamma_A \to H \otimes \Gamma_A (\Gamma_A, \mathrm{d}_A)$ becomes left H-covariant.
- ii.) The quotient calculus (Γ_H, d_H) on H is left covariant.
- iii.) ver is well-defined and ver = $(id \otimes \pi_{\Gamma}) \circ \Delta_{L}^{\Gamma_{A}} : \Gamma_{A} \to A \square_{H} \Gamma_{H}$.

Definition

We have

- i.) the pullback calculus (Γ_B, d_B) w.r.t. $\iota \colon B = A^{\mathrm{co}H} \to A$ (Base forms)
- ii.) the (A, B)-sub-bimodule $\Gamma^{\text{hor}} := A\Gamma_B := \operatorname{span}_{\Bbbk} \{a\omega_B \mid a \in A, \omega_B \in \Gamma_B\} \subseteq \Gamma_A$ (Horizontal forms)

Proposition

Exactness of $0 \to A \otimes_B \Gamma_B \to \Gamma_A \xrightarrow{\mathrm{ver}} A \square_H \Gamma_H \to 0$ is equivalent to the exactness of $0 \to A \Gamma_B \to \Gamma_A \xrightarrow{\mathrm{ver}} A \otimes^{\mathrm{co} H} \Gamma_H \to 0$ (= strong quantum principal bundle à la Majid). Then $A \otimes_B \Gamma_B \cong A \Gamma_B$.

Examples

Example

- i.) Consider the principal comodule algebra $\mathcal{O}_q(\mathbb{S}^2)\subseteq \mathrm{SL}_q(2)$ with structure Hopf algebra U(1).
 - The 3-dimensional right covariant FODC on A is a principal DC.
 - The 4-dimensional bicovariant FODC on A is not a weak principal DC.
- ii.) Let B be a left H-module algebra. The smash product A=B#H is a right H-comodule algebra with $A^{\mathrm{co}H}=B$.

$$(b\#h)(b'\#h') = (b(h_1 \rhd b')\#h_2h')$$

Choose a bicovariant FODC (Γ_H, d_H) on H and an H-module FODC (Γ_B, d_B) on B, i.e. $(h \triangleright d_B b = d_B (h \triangleright b))$.

There is a natural right H-covariant FODC $(\Gamma_{\#}, \mathrm{d}_{\#})$ on A, given by

$$\Gamma_{\#} = \Gamma_B \# H \oplus B \# \Gamma_H \text{ and } d_{\#} = d_B \oplus d_H.$$

This is a principal DC on A.

Graded Hopf-Galois Extension

 (A, δ_A) principal comodule algebra. (Γ_A, d_A) and (Γ_H, d_H) principal DC.

Lemma

i.) $\Omega_H^{\leq 1} = H \oplus \Gamma_H$ is a graded Hopf algebra with

$$\Delta^1 = \Delta_R^{\Gamma_H} + \Delta_L^{\Gamma_H} \colon \Gamma_H \to \Gamma_H \otimes H \oplus H \otimes \Gamma_H$$

and
$$S^1 : \Gamma_H \to \Gamma_H$$
, $\omega \mapsto -S(\omega_{-1})\omega_0 S(\omega_1)$.

ii.) $\Omega_A^{\leq 1} = A \oplus \Gamma_A$ is a graded right $\Omega_H^{\leq 1}$ -comodule algebra with $\delta_A^1 = \Delta_R^{\Gamma_A} + \mathrm{ver} \colon \Gamma_A \to \Gamma_A \otimes H \oplus A \otimes \Gamma_H.$

Theorem (Aschieri-Fioresi-Latini-W)

For a principal DC: $\Omega_B^{\leq 1} = \left(\Omega_A^{\leq 1}\right)^{\Omega_H^{\leq 1}} \subseteq \Omega_A^{\leq 1}$ is a graded Hopf-Galois extension.

We use tools developed by Schauenburg '96.

Corollary

For a principal DC we have $\Gamma_B = \Gamma_A^{\mathrm{co} H} \cap \Gamma_A^{\mathrm{hor}}$.

Quantum Principal Bundles

 $\mathrm{pr}\colon E\to M$ surjective morphisms of algebraic varieties, P affine group with associated Hopf algebra H.

Theorem (Pflaum '94)

pr is P-principal bundle if and only if $\mathcal{F}(U) := \mathcal{O}_E(\operatorname{pr}^{-1}(U))$ defines a sheaf of right H-comodule algebras such that on an open cover $\{U_i\}$ of M

- $2 \mathcal{F}(U_i) \cong \mathcal{F}(U_i)^{\mathrm{co}H} \otimes H$

Condition 2. says that $\mathcal{F}(U_i)^{\mathrm{co}H} \subseteq \mathcal{F}(U_i)$ is a cleft Hopf-Galois extension, i.e. there is a convolution invertible right H-colinear map $j \colon H \to \mathcal{F}(U_i)$.

 (M, \mathcal{O}_M) quantum ringed space, H Hopf algebra.

Definition (Aschieri-Fioresi-Latini '21)

Sheaf \mathcal{F} of right H-comodule algebras is (locally cleft) quantum principal bundle over M if there is open cover $\{U_i\}$ of M such that 1. and 2. hold.

If j is algebra map (locally trivial QPB) then $\mathcal{F}(U_i) \cong \mathcal{F}(U_i)^{\operatorname{co}H} \# H$ as comodule algebras, where $h \rhd b := j(h_1)bj^{-1}(h_2)$.

Example $SL_q(2)$ over \mathbb{CP}^1

Consider $A := \operatorname{SL}_q(2)$ with Hopf algebra quotient $\pi \colon A \to H$, $\begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix} \mapsto \begin{pmatrix} t & p \\ 0 & t^{-1} \end{pmatrix}$, where $H := \mathcal{O}_q(P) := \mathbb{C}_q[t,t^{-1},p]/(tp-q^{-1}pt)$ on parabolic subgroup P.

Consider the topology $\{\emptyset, U_1, U_2, U_{12}, \mathbb{CP}^1\}$ on \mathbb{CP}^1 . We define the sheaves

$$\begin{split} \mathcal{F}(\emptyset) &:= \{0\}, \ \mathcal{F}(U_1) := A[\alpha^{-1}], \ \mathcal{F}(U_2) := A[\gamma^{-1}], \\ \mathcal{F}(U_{12}) &:= (A[\alpha^{-1}])[\gamma^{-1}], \ \mathcal{F}(\mathbb{CP}^1) := A \end{split}$$

of right H-comodule algebras and

$$\begin{split} &\mathcal{O}_{\mathbb{CP}^1}(\emptyset) := \{0\}, \ \mathcal{O}_{\mathbb{CP}^1}(U_1) := \mathbb{C}_q[\alpha^{-1}\gamma] = \mathbb{C}_q[u], \\ &\mathcal{O}_{\mathbb{CP}^1}(U_2) := A[\gamma^{-1}\alpha] = \mathbb{C}_q[v], \\ &\mathcal{O}_{\mathbb{CP}^1}(U_{12}) := \mathbb{C}_q[u,u^{-1}], \ \mathcal{O}_{\mathbb{CP}^1}(\mathbb{CP}^1) := \mathbb{C}_q \end{split}$$

of algebras with restriction morphism $r_{12,2}$: $v \mapsto u^{-1}$.

 $\Rightarrow \mathcal{F}$ is QPB over $\mathcal{O}_{\mathbb{CP}^1}$ with cleaving maps $j_1 \colon t^\pm \mapsto \alpha^\pm$, $p \mapsto \beta$ and $j_2 \colon t^\pm \mapsto \gamma^\pm$, $p \mapsto \delta$.

General Construction

```
G complex semisimple algebraic group, P parabolic subgroup. \Rightarrow G/P is projective variety and G \to G/P principal bundle. Let \mathcal{O}_q(G), \mathcal{O}_q(P) be Hopf algebra quantizations of \mathcal{O}(G), \mathcal{O}(P).
```

 $s\in \mathcal{O}_q(G)$ is quantum section if $(\mathrm{id}\otimes\pi)\Delta(s)=s\otimes\pi(s)$ and $s=t\mod(q-1)$ for a classical section t (see Ciccoli-Fioresi-Gavarini '08). We write $\Delta(s)=s^i\otimes s_i$. $\Rightarrow \{s_i\}$ determine an algebra $\mathcal{O}_q(G/P)$ and an open cover $\{U_i\}$ of M=G/P.

Define $U_I := U_{i_1} \cap \ldots \cap U_{i_r}$ for $I = (i_1, \ldots, i_r)$.

Theorem (Aschieri-Fioresi-Latini '21)

- ① $U_l \mapsto \mathcal{O}_M(U_l) := \mathbb{C}_q[s_{k_1}s_{i_1}^{-1}, \dots, s_{k_r}s_{i_r}^{-1}]$ for $1 \le k_j \le n$ defines a sheaf \mathcal{O}_M of algebras on M = G/P.
- ② $U_l \mapsto \mathcal{F}_G(U_l) := \mathcal{O}_q(G)\{s_l^r \mid r \leq 0\}$ defines a sheaf \mathcal{F}_G of right H-comodule algebras.
- 3 $\mathcal{F}_G(U_I)^{\mathrm{co}\mathcal{O}_q(P)}=\mathcal{O}_M(U_I)$, i.e. \mathcal{F}_G is a QPB over M, possibly non-cleft.

Ore Extension of Calculi

Let (A, δ_A) be a right H-comodule algebra and $a \in A$ be an Ore element such that $\delta_A(a) \in A \otimes H$ is invertible.

Then $A[a^{-1}]$ is a right H-comodule algebra with $\delta_{A[a^{-1}]}(a^{-1}) = \delta_A(a)^{-1}$.

Lemma

Consider a right H-covariant FODC (Γ, d) on A and let $a \in A$ be as before. We define the $A[a^{-1}]$ -bimodule

$$\Gamma_a := A[a^{-1}] \Gamma A[a^{-1}] := A[a^{-1}] \otimes_A \Gamma \otimes_A A[a^{-1}]$$

and the k-linear map

$$\mathrm{d}_a:A[a^{-1}]\to\Gamma_a,\qquad \mathrm{d}_a(f)=egin{cases} \mathrm{d} f&f\in A\ -a^{-1}\,\mathrm{d} a\,a^{-1}&f=a^{-1} \end{cases},$$

where we extend d_a to $A[a^{-1}]$ by the Leibniz rule.

Then (Γ_a, d_a) is a right H-covariant FODC on $A[a^{-1}]$.

Calculi on Sheaves of Comodule Algebras

Stalk of a sheaf: for $x \in M$

$$\mathcal{F}_{\scriptscriptstyle X} = \{(\mathit{U}, s) \mid x \in \mathit{U} \text{ open and } s \in \mathcal{F}(\mathit{U})\}/\sim$$

where $(U, s) \sim (V, t)$ iff $\exists W \subseteq U \cap V$ s.t. $s|_W = t|_W$.

Definition

A right H-covariant FODC on sheaf $\mathcal F$ of right H-comodule algebras is a sheaf Υ of $\mathcal F$ -bimodules together with a morphism $\mathrm{d}\colon \mathcal F\to \Upsilon$ of sheaves of right H-comodules, such that on the stalks

- $2 \Upsilon_x = \mathcal{F}_x \mathrm{d}_x \mathcal{F}_x$

hold for all $x \in M$, where $d_x : \mathcal{F}_x \to \Upsilon_x$ is the induced map on the stalks.

Theorem (Aschieri-Fioresi-Latini-W '21)

Let (Γ,d) be a right $\mathcal{O}_q(P)$ -covariant FODC on the Hopf algebra $\mathcal{O}_q(G)$ and \mathcal{F}_G as before. Then

- ① there is a right $\mathcal{O}_q(P)$ -covariant FODC (Υ_G, d_G) on the sheaf \mathcal{F}_G , where $(\Upsilon_G(U_I), d_I)$ are the localizations of (Γ, d) .
- ② $(\Upsilon_G, \mathrm{d}_G)$ induces a FODC $(\Upsilon_M, \mathrm{d}_M)$ on the sheaf \mathcal{O}_M and a right covariant FODC (Γ_H, d_H) on the Hopf algebra $\mathcal{O}_q(P)$.

Principal Differential Calculi on Sheaves

Definition

Let $\mathcal F$ be a sheaf of principal comodule algebras. We say that a FODC (Υ,d) on $\mathcal F$ and a left covariant FODC (Γ_H,d_H) on H form a weak principal DC on $\mathcal F$, if on the topological basis $\{U_I\}$ of M

$$0 \to \mathcal{F}(U_I) \otimes_{\mathcal{O}_M(U_I)} \Upsilon_M(U_I) \to \Upsilon(U_I) \xrightarrow{\operatorname{ver}_I} \mathcal{F}(U_I) \square_H \Gamma_H \to 0$$

is exact. If in addition $\Upsilon(U_l)$ is right H-covariant and (Γ_H, d_H) is bicovariant we have a principal DC on \mathcal{F} .

Theorem (Aschieri-Fioresi-Latini-W)

For a principal DC (Υ, d) on a sheaf $\mathcal F$ of principal comodule algebras it follows that

$$\Upsilon_M = \Upsilon^{\mathrm{co}H} \cap \Upsilon^{\mathrm{hor}}$$

is an equation of sheaves of \mathcal{O}_M -bimodules.

The 3-dim Covariant Calculus on $A = SL_q(2)$

Theorem

Let (Γ_A,d_A) be the 3-dimensional left covariant FODC on A, consider the quotient calculus (Γ_H,d_H) on H and the left H-covariant FODC $(\Upsilon_G,\mathrm{d}_G)$ on \mathcal{F}_G . Then

- i.) $\Upsilon_G(U_I) = \Gamma_{A_I}$ is a free left $\mathcal{F}_G(U_I) = A_I$ -module generated by $\{\omega^0, \omega^1, \omega^2\}$.
- ii.) The base forms (Υ_M, d_M) are determined by $\Gamma_{B_1} = \operatorname{span}_{B_1} \{\alpha^{-2}\omega^2\}$ and $\Gamma_{B_2} = \operatorname{span}_{B_2} \{\gamma^{-2}\omega^2\}$ as free left modules with commutation relations

$$(\mathbf{d}_1 u)u = q^2 u \mathbf{d}_1 u, \qquad (\mathbf{d}_2 v)v = q^{-2} v \mathbf{d}_2 v,$$

where $u=\gamma\alpha^{-1}\in B_1$ and $v=\alpha\gamma^{-1}\in B_2$. Furthermore $\Gamma_{B_{12}}=\operatorname{span}_{B_{12}}\{\alpha^{-2}\omega^2\}$ is a free left B_{12} -module and $\mathrm{d}_1u=-q^2u^2\mathrm{d}_2v$ in $\Gamma_{B_{12}}$.

iii.) (Υ_G, d_G) is a weak principal differential calculus on the quantum principal bundle \mathcal{F}_G . In particular,

$$0 \to A_I \otimes_{B_I} \Gamma_{B_I} \to \Gamma_{A_I} \xrightarrow{\operatorname{ver}_I} A_I \square_H \Gamma_H \to 0$$

is exact for $I \in \{1, 2, 12\}$.

iv.) Locally (Υ_G, d_G) is not the smash product calculus, since e.g.

$$(\Upsilon_G(U_1), \mathrm{d}_1) \ncong (\Gamma_{B_1} \# H \oplus B_1 \# \Gamma_H, \mathrm{d}_\#).$$

Example $GL_q(2)$ over \mathbb{CP}^1

Theorem

The Ore extensions of $A=\operatorname{GL}_q(2)$ give rise to a quantum principal bundle ${\mathcal F}$, namely

$$\begin{split} \mathcal{F}(\emptyset) &= \{0\}, \quad \mathcal{F}(U_1) = A[\alpha^{-1}], \quad \mathcal{F}(U_1) = A[\gamma^{-1}], \\ \mathcal{F}(U_1 \cap U_2) &= A[\alpha^{-1}, \gamma^{-1}], \quad \mathcal{F}(M) = A. \end{split}$$

The Ore extension of the bicovariant FODC (Γ_A, d_A) on A is a principal DC (Υ, d) on \mathcal{F} . Locally, it is not the smash product calculus.

- (Γ_A, d_A) is 4-dimensional $\omega^1, \omega^2, \omega^3, \omega^4$
- The quotient calculus (Γ_H, d_H) on $H = A/\langle \gamma \rangle$ is 3-dimensional $[\omega^1], [\omega^3], [\omega^4]$
- $B_1 = \mathcal{F}(U_1)^{\mathrm{co}H} = \mathbb{C}_q[\alpha^{-1}\gamma]$ with 1-dimensional calculus generated by $\mathrm{d}_1(u) = \mathrm{d}_1(\alpha^{-1}\gamma) = -\alpha^{-2}\omega^2$
- $\operatorname{ver}_1(\sum_{i=1}^4 a^i \omega^i) = \sum_{i=1}^4 a_0^i \otimes a_1^i [\omega^i]$

So $0 \to A_I \otimes_{B_I} \Gamma_{B_I} \to \Gamma_{A_I} \xrightarrow{\operatorname{ver}_I} A_I \square_H \Gamma_H \to 0$ is exact.

PFLAUM, M.: Quantum groups on fiber bundles, Commun. Math. Phys. 166 (1994) 279-315.

 $\begin{array}{ll} {\rm PFLAUM,~M.,~SCHAUENBURG,~P.:~\textit{Differential calculi on noncommutative bundles,~Z~Phys~C~-~Particles~and~Fields~76~(1997)~733-744.} \end{array}$

WORONOWICZ, S. L.: Differential calculus on compact matrix pseudogroups (quantum groups). Comm. Math. Phys., 122(1):125-170, 1989.

Thank you for your attention!